Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Lancet Glob Health ; 11(6): e933-e941, 2023 06.
Article in English | MEDLINE | ID: covidwho-2317004

ABSTRACT

BACKGROUND: From the start of the SARS-CoV-2 outbreak, global sequencing efforts have generated an unprecedented amount of genomic data. Nonetheless, unequal sampling between high-income and low-income countries hinders the implementation of genomic surveillance systems at the global and local level. Filling the knowledge gaps of genomic information and understanding pandemic dynamics in low-income countries is essential for public health decision making and to prepare for future pandemics. In this context, we aimed to discover the timing and origin of SARS-CoV-2 variant introductions in Mozambique, taking advantage of pandemic-scale phylogenies. METHODS: We did a retrospective, observational study in southern Mozambique. Patients from Manhiça presenting with respiratory symptoms were recruited, and those enrolled in clinical trials were excluded. Data were included from three sources: (1) a prospective hospital-based surveillance study (MozCOVID), recruiting patients living in Manhiça, attending the Manhiça district hospital, and fulfilling the criteria of suspected COVID-19 case according to WHO; (2) symptomatic and asymptomatic individuals with SARS-CoV-2 infection recruited by the National Surveillance system; and (3) sequences from SARS-CoV-2-infected Mozambican cases deposited on the Global Initiative on Sharing Avian Influenza Data database. Positive samples amenable for sequencing were analysed. We used Ultrafast Sample placement on Existing tRees to understand the dynamics of beta and delta waves, using available genomic data. This tool can reconstruct a phylogeny with millions of sequences by efficient sample placement in a tree. We reconstructed a phylogeny (~7·6 million sequences) adding new and publicly available beta and delta sequences. FINDINGS: A total of 5793 patients were recruited between Nov 1, 2020, and Aug 31, 2021. During this time, 133 328 COVID-19 cases were reported in Mozambique. 280 good quality new SARS-CoV-2 sequences were obtained after the inclusion criteria were applied and an additional 652 beta (B.1.351) and delta (B.1.617.2) public sequences were included from Mozambique. We evaluated 373 beta and 559 delta sequences. We identified 187 beta introductions (including 295 sequences), divided in 42 transmission groups and 145 unique introductions, mostly from South Africa, between August, 2020 and July, 2021. For delta, we identified 220 introductions (including 494 sequences), with 49 transmission groups and 171 unique introductions, mostly from the UK, India, and South Africa, between April and November, 2021. INTERPRETATION: The timing and origin of introductions suggests that movement restrictions effectively avoided introductions from non-African countries, but not from surrounding countries. Our results raise questions about the imbalance between the consequences of restrictions and health benefits. This new understanding of pandemic dynamics in Mozambique can be used to inform public health interventions to control the spread of new variants. FUNDING: European and Developing Countries Clinical Trials, European Research Council, Bill & Melinda Gates Foundation, and Agència de Gestió d'Ajuts Universitaris i de Recerca.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Phylogeny , Mozambique/epidemiology , Retrospective Studies , Prospective Studies
2.
Clin Infect Dis ; 73(Suppl_5): S472-S479, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1573816

ABSTRACT

BACKGROUND: Infectious diseases' outbreak investigation requires, by definition, conducting a thorough epidemiological assessment while simultaneously obtaining biological samples for an adequate screening of potential responsible pathogens. Complete autopsies remain the gold-standard approach for cause-of-death evaluation and characterization of emerging diseases. However, for highly transmissible infections with a significant associated lethality, such as COVID-19, complete autopsies are seldom performed due to biosafety challenges, especially in low-resource settings. Minimally invasive tissue sampling (MITS) is a validated new approach based on obtaining postmortem samples from key organs and body fluids, a procedure that does not require advanced biosafety measures or a special autopsy room. METHODS: We aimed to review the use of MITS or similar procedures for outbreak investigation up to 27 March 2021 and their performance for evaluating COVID-19 deaths. RESULTS: After a literature review, we analyzed in detail the results of 20 studies conducted at international sites, whereby 216 COVID-19-related deaths were investigated. MITS provided a general and more granular understanding of the pathophysiological changes secondary to the infection and high-quality samples where the extent and degree of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related damage could be evaluated. CONCLUSIONS: MITS is a useful addition in the investigation and surveillance of infections occurring in outbreaks or epidemics. Its less invasive nature makes the tool more acceptable and feasible and reduces the risk of procedure-associated contagion, using basic biosafety measures. Standardized approaches protocolizing which samples should be collected-and under which exact biosafety measures-are necessary to facilitate and expand its use globally.


Subject(s)
COVID-19 , Autopsy , Humans , Pandemics , SARS-CoV-2
3.
Glob Public Health ; 16(1): 153-157, 2021 01.
Article in English | MEDLINE | ID: covidwho-894504

ABSTRACT

After the Ebola outbreaks the world is again facing a challenge in which human behaviours and contact history play crucial roles in determining the trends in disease spreading within and across communities. With the onset of the recent coronavirus disease (COVID-19) pandemic, several issues related to conducting social behavioural sciences research and related community engagement activities arise, especially in rural areas of low-income countries, where the coverage of information and communication technologies (ICTs) is limited and their application on field-based research would imply a biased selection of relatively more privileged minorities with access to on-line and other communication platforms not requiring physical contact. This article enumerates and discusses the different technical challenges that social behavioural sciences research and community engagement activities face in times of public health emergencies caused by pandemics such as COVID-19. It also highlights the possibility of using alternative approaches to maintain the engagement with members of rural communities in research and social action activities, as well as the ethical challenges arising from such approaches.


Subject(s)
COVID-19/epidemiology , Community Participation , Research , Social Sciences , Humans , Mozambique/epidemiology , Pandemics , Rural Population , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL